Обзоры

Звезды вселенной

Звезды

На протяжении многих веков миллионы человеческих глаз с наступлением ночи устремляют свой взгляд ввех – в сторону загадочных огоньков в небе — звезд нашей Вселенной. Древние люди видели в скоплениях звезд различные фигуры животных и людей, и каждой из них создавали свою историю. Позже подобные скопления стали называть созвездиями. На сегодняшний день астрономы выделяют 88 созвездий, разделяющих звёздное небо на определённые участки, по которым можно ориентироваться и определять местоположение звёзд. В нашей Вселенной самыми многочисленными объектами, доступными человеческому глазу, являются именно звёзды. Они представляют собой источник света и энергии для всей Солнечной системы. Они также создают тяжелые элементы, необходимые для зарождения жизни. А без звёзд Вселенной не было бы жизни, ведь Солнце дарит свою энергию практически всем живым существам на Земле. Оно согревает поверхность нашей планеты, создавая, тем самым, теплый, полный жизни оазис среди вечной мерзлоты космосы. Степень яркости звезды во Вселенной определяется её размером.

Знаете ли вы самую большую звезду во всей Вселенной?

Звезда VY Canis Majoris, находящаяся в созвездии Большого Пса является самым большим представителем звездного мира. На данный момент это самая большая звезда во Вселенной. Звезда расположена в 5 тысячах световых лет от Солнечной системы. Диаметр звезды составляет 2,9 млрд. км.

Но не все звезды во Вселенной настолько огромны. Существуют также так называемые звезды-карлики.

Сравнительные размеры звезд
Самая большая звезда во Вселенной

Астрономы оценивают величину звёзд по шкале, согласно которой, чем ярче звезда, тем меньше её номер. Каждый последующий номер соответствует звезде, в десять раз менее яркой, чем предыдущая. Самой яркой звездой ночного неба во Вселенной является Сириус. Его видимая звёздная величина составляет -1.46, а это значит, что он в 15 раз ярче звезды с нулевой величиной.



Звёзды, чья величина составляет 8 и более невозможно увидеть невооружённым взглядом. Звёзды также разделяются по цветам на спектральные классы, указывающие на их температуру. Существуют следующие классы звёзд Вселенной: O, B, A, F, G, K, и M. Классу О соответствуют самые горячие звёзды во Вселенной– голубого цвета. Самые холодные звёзды относятся к классу М, их цвет красный.

Спектральные классы звезд Вселенной

Класс Температура,K Истинный цвет Видимый цвет Основные признаки
O 30 000—60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
B 10 000—30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A 7500—10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F 6000—7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
G 5000—6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K 3500—5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
M 2000—3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.

Вопреки всеобщему заблуждению, стоит отметить, что звёзды Вселенной на самом деле не мерцают. Это лишь оптический обман – результат атмосферной интерференции. Похожий эффект можно наблюдать жарким летним днём, глядя на раскалённый асфальт или бетон. Горячий воздух поднимается, и кажется, будто вы смотрите сквозь дрожащее стекло. Тот же процесс вызывает иллюзию звёздного мерцания. Чем ближе звезда к Земле, тем больше она будет «мерцать», потому что её свет проходит через более плотные слои атмосферы.

Ядерный Очаг звезд Вселенной

Цикл звездЗвезда во Вселенной представляет собой гигантский ядерный очаг. Ядерная реакция внутри её превращает водород в гелий, благодаря процессу синтеза, так звезда приобретает свою энергию. Атомные ядра водорода с одним протоном объединяются в атомы гелия с двумя протонами. Ядро обычного атома водорода имеет всего один протон. Два изотопа водорода также содержат один протон, но ещё имеют нейтроны. Дейтерий имеет один нейтрон, в то время, как Тритий имеет два. Глубоко внутри звезды атом дейтерия соединяется с атомом трития, образуя атом гелия и свободный нейтрон. В результате этого продолжительного процесса высвобождается огромное количество энергии.

Для звёзд главной последовательности основным источником энергии являются ядерные реакции с участием водорода: протон-протонный цикл, характерный для звезд с массой около солнечной и CNO-цикл, идущий только в массивных звёздах и только при наличии в их составе углерода. На более поздних стадиях жизни звезды могут идти ядерные реакции и с более тяжёлыми элементами вплоть до железа.

Протон-протоный цикл CNO-цикл
Основные цепочки
  • p + p → ²D + e+ + νe + 0,4 МэВ
  • ²D + p3He + γ + 5,49 МэВ.
  • 3He + 3He → 4He + 2p + 12,85 МэВ.
  • 12C + 1H → 13N + γ +1,95 МэВ
  • 13N → 13C + e+ + νe +1,37 МэВ
  • 13C + 1H → 14N + γ| +7,54 МэВ
  • 14N + 1H → 15O + γ +7,29 МэВ
  • 15O → 15N + e+ + νe+2,76 МэВ
  • 15N + 1H → 12C + 4He+4,96 МэВ

Когда водородный запас звезды исчерпывается, она начинает превращать гелий в кислород и углерод. Если звезда достаточно массивна, процесс превращения будет продолжаться до тех пор, пока углерод и кислород не образуют неон, натрий, магний, серу и кремний. В итоге, эти элементы преобразуются в кальций, железо, никель, хром и медь, пока ядро не будет полностью состоять из металла. Как только это произойдёт, ядерная реакция прекратится, так как температура плавления железа слишком велика. Внутреннее гравитационное давление становится выше внешнего давления ядерной реакции и, в конце концов, звезда коллапсирует. Дальнейшее развитие событий зависит от изначальной массы звезды.



Типы звезд Вселенной

Главная последовательность – это период существования звезд Вселенной, во время которого внутри её проходит ядерная реакция, являющийся самым длинным отрезком жизни звезды. Наше Солнце сейчас находится именно в этом периоде. В это время звезда претерпевает незначительные колебания в яркости и температуре. Продолжительность такого периода зависит от массы звезды. У крупный массивных звёзд он короче, а у мелких длиннее. Очень большим звёздам внутреннего топлива хватает на несколько сотен тысяч лет, в то время, как малые звёзды, как Солнце, будут сиять миллиарды лет. Самые крупные звёзды во время главной последовательности превращаются в голубых гигантов.

Типы звезд Вселенной
Красный гигант – это крупная звезда красноватого или оранжевого цвета. Она представляет собой позднюю стадию цикла, когда запасы водорода подходят к концу и гелий начинает преобразовываться в другие элементы. Повышение внутренней температуры ядра приводит к коллапсу звезды. Внешняя поверхность звезды расширяется и остывает, благодаря чему звезда приобретает красный цвет. Красные гиганты очень велики. Их размер в сто раз больше обычных звёзд. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта. Звезды Вселенной: красный гигант
Белый карлик – это то, что остаётся от обычной звезды, после того, как она проходит стадию красного гиганта. Когда у звезды больше не остаётся топлива, она может выделять часть своей материи в космос, образуя планетарную туманность. То, что остаётся – это мёртвое ядро. Ядерная реакция в нем не возможна. Оно сияет за счёт своей оставшейся энергии, но она рано или поздно кончается, и тогда ядро остывает, превращаясь в чёрного карлика. Белые карлики – очень плотные. По размеру они не больше Земли, но массу их можно сравнить с массой Солнца. Это невероятно горячие звёзды, их температура достигает 100,000 градусов и более. Звезды Вселенной: Белый карлик
Коричневого карлика ещё называют субзвездой. Во время своего жизненного цикла некоторые протозвёзды никогда не достигают критической массы, чтобы начать ядерные процессы. Если масса протозвезды составляет лишь 1/10 массы Солнца, её сияние будет недолгим, после чего она быстро гаснет. То, что остаётся и есть коричневый карлик. Это массивный газовый шар, слишком большой, чтобы быть планетой, и слишком, маленький, чтобы стать звездой. Он меньше Солнца, но в несколько раз больше Юпитера. Коричневые карлики не излучают ни света, ни тепла. Это лишь тёмный сгусток материи, существующий на просторах Вселенной. Звезды Вселенной: коричневый карлик
Цефеида – это звезда с переменной светимостью, цикл пульсации которой колеблется от нескольких секунд до нескольких лет, в зависимости от разновидности переменной звезды. Цефеиды обычно изменяют свою светимость в начале жизни и в её завершении. Они бывают внутренними (изменяющими светимость в связи с процессами внутри звезды) и внешними, меняющими яркость вследствие внешних факторов, как, например, влияние орбиты ближайшей звезды. Это ещё называется двойной системой. Звезды Вселенной Цефеиды
Многие звёзды во Вселенной являются частью больших звёздных систем. Двойные звезды – это система из двух звёзд, гравитационно-связанных между собой. Они вращаются по замкнутым орбитам вокруг одного центра масс. Доказано, что половина всех звёзд нашей галактики имеют пару. Визуально парные звёзды выглядят, как две отдельные звезды. Их можно определить по смещению линий спектра (эффект Доплера). В затменно-двойных системах звёзды периодически затмевают друг друга, так как их орбиты расположены под маленьким углом к лучу зрения. Звезды Вселенной: двойные звезды

Жизненный Цикл звезд Вселенной

Звезда во Вселенной начинает свою жизнь в виде облака пыли и газа, называемого туманностью. Гравитация соседней или взрывная волна сверхновой звезды могут заставить туманность сжиматься. Элементы газового облака объединяются в плотную область, называемую протозвездой. В результате последующего сжатия протозвезда нагревается. В итоге, она достигает критической массы, и начинается ядерный процесс; постепенно звезда проходит все фазы своего существование. Первый (ядерный) этап жизни звезды – самый долгий и стабильный. Продолжительность жизни звезды зависит от её размера. Крупные звёзды расходуют своё жизненное топливо быстрее. Их жизненный цикл может длиться не более нескольких сотен тысяч лет. А вот маленькие звёзды живут многие миллиарды лет, так как тратят свою энергию медленнее.

Смерть звезды

Смерть звезды

Но, как бы то ни было, рано или поздно, звёздное топливо кончается, и тогда маленькая звезда превращается в красного гиганта, а крупная звезда – в красного супергиганта. Эта фаза продлиться до тех пор, пока топливо не израсходуется окончательно. В этот критический момент внутреннее давление ядерной реакции ослабнет и больше не сможет уравновешивать силу гравитации, и, в результате, произойдет коллапс звезды. Затем небольшие звёзды Вселенной, как правило, перевоплощаются в планетарную туманность с ярким сияющим ядром, называемым белым карликом. Со временем и он остывает, превращаясь в тёмный сгусток материи – чёрного карлика.

У больших звезд всё происходит немного иначе. Во время коллапса они высвобождают невероятное количество энергии, и мощный взрыв рождает сверхновую звезду. Если её величина составляет 1.4 величины Солнца, тогда, к сожалению, ядро не сможет поддерживать своё существование и, после очередного коллапса, сверхновая звезда станет нейтронной. Внутренняя материя звезды сожмётся до такой степени, что атомы образуют плотную оболочку, состоящую из нейтронов. Если же звёздная величина в три раза больше солнечной, то коллапс её просто уничтожит, сотрёт с лица Вселенной. Всё, что от неё останется – участок сильнейшей гравитации, прозванный чёрной дырой.

Жизненный цикл звезды

Туманность, оставшаяся после звезды Вселенной, может расширяться в течение миллионов лет. В конце концов, на неё подействует гравитация соседней или взрывная волна сверхновой звезды и всё повторится снова. Этот процесс будет происходить по всей Вселенной – бесконечный цикл жизни, смерти и возрождения. Результатом этой звёздной эволюции является образование тяжёлых элементов, необходимых для жизни. Наша солнечная система произошла из второго или третьего поколения туманности, и благодаря этому на Земле и других планетах есть тяжёлые элементы. А это значит, что в каждом из нас есть частички звёзд. Все атомы нашего тела были зарождены в атомном очаге либо в результате разрушительного взрыва сверхновой звезды.

Список самых ярких звезд видимых с Земли

Название Расстояние, св. лет Видимая величина Абсолютная величина Спектральный класс Небесное полушарие
0 Солнце
0,0000158 −26,72 4,8 G2V
1 Сириус
8,6 −1,46 1,4 A1Vm Южное
2 Канопус
310 −0,72 −5,53 A9II Южное
3 Толиман  4,3 −0,27 4,06 G2V+K1V Южное
4 Арктур 34 −0,04 −0,3 K1.5IIIp Северное
5 Вега
25 0,03 (перем) 0,6 A0Va Северное
6 Капелла
41 0,08 −0,5 G6III + G2III Северное
7 Ригель ~870 0,12 (перем) −7[3] B8Iae Южное
8 Процион
11,4 0,38 2,6 F5IV-V Северное
9 Ахернар  69 0,46 −1,3 B3Vnp Южное
10 Бетельгейзе
~530 0,50 (перем) −5,14 M2Iab Северное
11 Хадар  ~400 0,61 (перем) −4,4 B1III Южное
12 Альтаир 16 0,77 2,3 A7Vn Северное
13 Акрукс  ~330 0,79 −4,6 B0.5Iv + B1Vn Южное
14 Альдебаран 60 0,85 (перем) −0,3 K5III Северное
15 Антарес
~610 0,96 (перем) −5,2 M1.5Iab Южное
16 Спика
250 0,98 (перем) −3,2 B1V Южное
17 Поллукс
40 1,14 0,7 K0IIIb Северное
18 Фомальгаут
22 1,16 2,0 A3Va Южное
19 Мимоза ~290 1,25 (перем) −4,7 B0.5III Южное
20 Денеб
~1550 1,25 −7,2 A2Ia Северное
21 Регул
69 1,35 −0,3 B7Vn Северное
22 Адара
~400 1,50 −4,8 B2II Южное
23 Кастор
49 1,57 0,5 A1V + A2V Северное
24 Гакрукс  120 1,63 (перем) −1,2 M3.5III Южное
25 Шаула  330 1,63 (перем) −3,5 B1.5IV Южное


Нет комментариев

Добавить комментарий